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The Value of Design Strategies applied to Energy Efficiency  
 
Abstract  
Today, advanced design strategies supported by iterative engineering performance calculations expand 
the number of alternatives designers can analyze by orders of magnitude. Yet, in the face of vast, under-
constrained design challenges with wide ranging and often-subjective implications, it is not possible to 
replace building design with automated search. Saddled with limited time and resources, building 
designers are left to choose among strategies of varying costs and capabilities to assist in the generation 
and selection of alternatives. Designers require assistance in the selection of strategies that are effective in 
promoting sustainability. 
 
This paper develops a method to compare the value of distinct design strategies. Using the Design 
Exploration Assessment Methodology (DEAM), the paper demonstrates that designers face non-trivially 
distinct challenges, even in the well-defined arena of design for energy efficiency. It evaluates and 
compares the effectiveness of strategies such as point-analysis, screening, trend analysis, and 
optimization, identifies associated process costs, and presents a method to assess the relative value of 
information that each strategy provides for a given challenge. Findings empirically rank six strategies for 
two challenges and demonstrate the relatively high value of trend analysis for energy-efficient design. 
The implication is that advanced computer analysis strategies should be pursued to support high 
performance design and motivates future research to assess value of various strategies in the context of 
broader and often more qualitative fields of sustainable design. 
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Terms 
Components 

Variable: a design choice to be made. A variable can be discreet (i.e., number of windows) or 
continuous (i.e., building length).  

Option: individual variable input(s) (i.e., number of windows = {1, 2, or 3}; building length = 10-20 
meters). 

Decision: the selection of an option (i.e., a number of windows = 2; building   length = 12.75 meters). 
Alternative: a combination of decisions about options. 
Stakeholder: a party with a stake in the selection of alternatives. 
Goal: declaration of intended properties of alternatives. 
Preference: weight assigned to a goal by a stakeholder.  
Constraint: limit placed on options. 
Impact: alternative’s estimated performance according to a specified goal.  
Requirement: limit placed on impacts. 
Objective: union of stakeholders, goals, preferences and constraints. 
Value: net performance of an alternative relative to all objectives. 

Dimensions 
Challenge: a set of decisions to be made ranging from simple to complex.  
Strategy: a procedure to generate decisions ranging from none to advanced.  
Exploration: a history of decisions made ranging from misled to guided.  
Design Process: implementation of a strategy to a challenge resulting in an exploration. 



Guidance: variation in exploration produced by applying different strategies to a given challenge.  
Spaces 

Objective space: set of stakeholders, goals, preferences and constraints.  
Alternative space: feasible (explored or unexplored) alternatives for a given challenge. 
Impact space: analyzed impacts of alternatives relative to goals, determined to be acceptable or 

unacceptable according to requirements.  
Value space: values of the set of alternatives generated during an exploration.  
Design space: the space consisting of objective, alternative, impact and value spaces. 

Challenge Metrics 
Objective space size (OSS): the number of objectives considered in the challenge. 
Alternative space interdependence (ASI) - the number of first order interactions among variables 

divided by total number of variable combinations. ASI represents the extent to which interactive 
effects impact value. In the synthetic experiment performed for this research, it is calculated using 
built-in capabilities of existing process integration design optimization (PIDO) software. In 
general, the higher the ASI is, the more complex the challenge. 

Impact space complexity (ISC): the number of variables found to result in performance trade-offs 
(divergent impacts) divided by total number of variables. ISC represents the percentage of 
variables with competing objectives. In the synthetic experiment performed for this research, ISC 
is observable using built-in capabilities of existing PIDO software. The higher the ISC is, the more 
complex the challenge. 

Value space dominance (VSD): the extent to which value is dominated by individual variables 
calculated using sensitivity analyses. VSD represents the importance of individual design 
decisions. In the synthetic experiment performed for this research, it is calculated using built-in 
capabilities of existing PIDO software. Because the lower the VSD, the more complex the 
challenge, VSD is presented as its reciprocal (1-importance). 

Strategy Metrics 
Process Cost (PC): the estimated cost of implementing a strategy; the estimated number of hours 

required, multiplied by an assumed labor rate ($100/hr). 
Value of Information:  difference between expected project value with the information, and expected 

project value without the information, minus the process cost of acquiring the information. 
Exploration Metrics 

Value space maximum (VSM): the top value calculated for alternatives generated in a given 
exploration. This metric characterizes the maximum value generated. 

 
For additional background information describing these metrics and terminology see (Clevenger & 
Haymaker, 2011). We use italics throughout this paper to indicate explicit reference to these definitions. 
 
Introduction 
Design is a sequence of events in which a problem is understood, and alternatives are generated and 
evaluated (Cross & Roozenburg, 1992), (Frost, 1992), (Clarkson & Eckert, 2005). Performance-based or 
high performance design involves selection of variables to address formal performance objectives (Zhu & 
Kazmer, 2000), (Foschi, et al. 2002). Performance-based design seeks to maximize value according to 
challenge addressed, by implementing a strategy that leads to effective exploration (Clevenger & 
Haymaker, 2010). In this paper, we examine high performance design with energy efficiency as the 
objective. Today, owner, contractual and user demands in Architecture, Engineering and Construction 
(AEC) industries increasingly address a wider variety of objectives. Designers are increasingly asked to 
reliably maximize the value of their buildings with respect to multiple sustainability objectives (AIA, 
2007) including occupant comfort and health, and many other social, environmental, and economic 
performance considerations.  
 



Computer modeling automation promises powerful assistance for estimating building operational costs by 
applying a given strategy to a given challenge. In building energy performance research, computer 
analyses that perform building optimization (Wetter, 2004), (Christensen et al, 2006), trade-space analysis 
(Ross & Hastings, 2005) and Process Integration Design Optimization (Flager et al, 2009) (Welle et al, 
2011) are being tested. Such advanced computing strategies provide capabilities well beyond those of 
unaided humans, and significantly extend designers’ ability to search large design spaces (Woodbury & 
Burrow, 2006).  
  
To date, however, designers have met with relatively modest success in leveraging computer analysis to 
meet sustainability objectives and have struggled to reliably improve building operational performance. 
Flawed or inaccurate models, in part, result from the inherent and acknowledged complexity of building 
science. Example deficiencies range from difficulty predicting solar radiation (Gueymard, 2009) to lack 
of consistency in modeling building thermal performance etc. (Crawley et al, 2008) to name a few. 
Additional barriers to the fidelity of computer analysis include the significant time needed to prepare 
models, inaccuracies within the models, and the vast number of inputs and output estimates that are 
themselves inconsistent and highly dependent on various assumptions (Majidi & Bauer 1995), (Clarke, 
2001), (Bazjanac, 2008). While such deficiencies can plague high performance energy-efficient design, 
they expand in the face of the broader field of sustainable development which includes more nebulous 
objectives such as ethics, health and comfort in decision making (Williamson et al, 2003) (Wilson et al, 
2007). Researchers have suggested that systems-thinking is necessary to identify complementary 
performance tools that advance sustainable development (Robert et al, 2002). Broader evaluations, 
however, tend to lack clear identification, definition or ability to evaluate precise metrics. In general, 
designers are frequently hesitant to apply unfamiliar strategies because they are unable to assess the value 
provided. In high performance building, design teams frequently limit the role of energy modeling in 
professional practice to performance verification near the end of a design process. Moreover, to date, such 
analyses generally fail to reliably support performance-based design explorations or accurately predict 
building performance (Papamichael & Pal, 2002), (de Wilde & van der Voorden, 2004), (Hensen, 2004). 
However, despite these difficulties, computer simulation is having significant and growing impact on 
building delivery processes (McGraw Hill, 2007), and is being used to support a growing number of 
performance objectives (Fischer, 2006). Designers are now faced with needing to choose from these 
growing lists of strategies, one that is best suited to their specific challenges. 
 
This paper focuses on energy efficient design as an important sub-set of sustainable design. It does not 
address the fidelity of building performance modeling assumptions or algorithms, but leaves such 
research to others (Willman, 1985), (Judkoff & Neymark, 1995), (Crawley et al., 2001). Several 
researchers have also examined the role of uncertainty in energy modeling using either external or 
internal calculation methods (de Wit 1995), (Macdonald & Strachan 2001), (de Wit & Augenbroe, 2002), 
(Macdonald, 2002). Similarly, this paper does not address uncertainty in modeling outcomes. Rather, this 
paper addresses the choice of strategy related to energy efficiency, and generally assumes various 
recognized shortcomings in energy modeling simulation tools and analyses are surmountable. The goal is 
to assess the value of information available from a given analysis strategy relative to an energy efficiency 
challenge. Using a crude cost-benefit analysis, we describe a method to assist in the selection of a design 
strategy as a value-add analysis technique in high performance, specifically energy efficient design. 
Future research may extend such findings to the broader field of sustainable design or development as 
tools and comparative analyses involving more subjective metrics are developed. 
 
To perform this research, we adopt and apply a previously developed Design Exploration Assessment 
Methodology (DEAM) (Clevenger & Haymaker, 2010). We select DEAM for this research because, 
unlike other better known multi-criteria decision analysis techniques, DEAM articulates differences 
among challenges in addition to assessing or analyzing the dimensions of strategy and exploration. Here, 
we use DEAM to identify and illuminate variations among climate-dependent performance-based 



challenges and the differences in resulting empirical design explorations afforded by different strategies. 
We extend DEAM to include a method for estimating process cost and assess the value of the guidance 
provided by a select strategy for a given challenge. We describe six conceptual design strategies, and 
assess their application by designers across two theoretical challenges to provide a preliminary ranking of 
analysis strategies with respect to the value of information provided. We use these findings to provide 
insight into the strengths and weaknesses of various strategies in high performance building design and 
hypothesize about relationships between strategy and challenge in energy efficient design. We discuss the 
potential and limitations for this method to enable strategy selection or development. We conclude by 
proposing opportunities for additional research.  
 
Strategies 
Design strategies range from informal to exhaustive. Kleijnen suggests five main categories of strategies 
exist in engineering analysis: validation, screening, sensitivity analysis, uncertainty analysis, and 
optimization (Kleijnen, 1997). Ross introduces trade-off analysis as an emerging strategy, useful for 
assessing high performance building (Ross and Hastings, 2005). For purposes of this research we adopt 
and narrowly define four approaches for engineering analyses as outlined by Kleijnen and relevant to 
energy efficient design as the domain of the study.  In addition, we include random guessing and full 
analysis to serve as theoretical limits representing a full range of strategies relevant to high performance 
design today. Next we discuss the definition of these strategies as used in this conceptual study.  
 
Validation, as used by Kleinjnen consists of statistical tests demonstrating a model’s ability to represent 
the real-world. While this typically is the first concern for most modelers, as previously mentioned, this 
study does not validate the fidelity of energy modeling. We consider point-analysis used for performance 
verification as the most basic energy modeling approach. This approach is consistent with Simon’s 
description of the search for “satisficing” solutions, as looking for those solutions that are “good enough,” 
but not necessarily optimum (Simon, 1987B). As we define it, verification analysis provides point 
predictions with little to no information regarding the predicted impact(s) of unanalyzed alternatives. 
Research shows that energy models used in Architecture, Engineering, and Construction (AEC) practice 
today are primarily used for verification. Specifically, they provide point analysis of estimated whole 
building performance to ’validate’ that a particular design satisfies energy efficiency goals after it is 
mostly designed, but prior to it being built (Flager & Haymaker, 2007), (Gane & Haymaker, 2010). In 
such implementation, energy modelers make assumptions about hundreds of inputs resulting in the 
possibility of an exponentially high number of design alternatives (Clarke, 2001). However, modelers 
typically only generate and disseminate the estimated performance on a handful of design alternatives. 
Professionals using building performance modeling in such a fashion generally report low satisfaction 
with the tools and process. When polled, modelers and designers identify development of expanded pre- 
and post-processing as top priority for energy modeling (Crawley, et al. 1997).  
 
Screening analysis performs numerical experiments to identify the few important factors that influence 
performance. Typically, in a model with a large number of parameters, a few inputs dominate 
performance (Kleijnen 1997). Researchers in other fields (Sacks et al, 1989) successfully divide input 
variables into control factors and noise factors. Extensive research exists to develop algorithms that 
successfully perform group screenings (e.g.; “one-factor-at-a-time” (Morris 1991), two-level screening 
(Morris 1987), (Rahni & Ramdani, 1997), and sequential bifurcation (Bettonvil, 1990), (Kleijnen, 1997). 
Several studies have attempted to apply such screening techniques to building energy modeling (O’neill 
& Crawley, 1991), (de Wit, 1995), (Rahni & Ramdani, 1995), (Brown & Tapia, 2000). Despite such 
efforts, many building professionals today have limited tacit knowledge of dominant factors that influence 
energy performance (Clevenger & Haymaker, 2010a).  
 
Sensitivity analysis consists of the systematic investigation of how a model’s outputs vary relative to 
model inputs. It is used to bracket individual variables’ contribution to performance. Sensitivity analysis 



builds upon screening analysis, and is typically calculated either locally, varying one input at a time 
(high-low) holding all others constant; or globally, assessing output variability for a single input across 
the variation of all other inputs. Some sensitivity analyses analyze a model’s responses to extreme inputs, 
while others may gauge the impact of more probable inputs (Kleijnen, 1997). Researchers have applied 
sensitivity analysis to building performance simulation (Lomas & Eppel 1992), (Furbringer & Roulet, 
1995), (Lam & Hui, 1996), (Rahni et al, 1997), (Breesch & Janssens, 2004), (Clevenger & Haymaker, 
2006), (Harputlugil et al, 2007), (Mara & Tarantola, 2008). Due to the inherent complexity of building 
simulation, most examinations have been limited to one-factor-at-a-time and have excluded geometric 
decisions (Harputlugil et al., 2007). 
 
Uncertainty analysis consists of testing probabilistic distributions to demonstrate potential consequences 
of uncertainties or risks. To assess uncertainty or risk, inputs are typically modeled as probability 
distributions. Uncertainty analysis focuses on gauging the range of possible outputs to evaluate risk 
potential. While it assesses relationships between outputs and inputs, it is possible that a model is very 
sensitive to a specific input, but that that parameter is well known (certain) and plays only a very limited 
role in uncertainty analysis (Macdonald 2002). While several researchers have examined the role of 
uncertainty in energy modeling using either external or internal calculation methods (de Wit 1995), 
(Macdonald & Strachan 2001), (de Wit & Augenbroe, 2002), (Macdonald, 2002), this research does not 
currently address uncertainty.  
 
Optimization uses mathematical calculations to identify a single or set of top performers (Kleijnen 1997), 
(Al-Homoud, 2001). Numerous mathematical algorithms exist or are under development to support 
optimization analysis across numerous engineering disciplines. In building design, a single or set of 
alternatives on Pareto frontiers may be considered optimal if no other alternative exists that is superior 
across all objectives. A number of researchers continue to work to apply optimization to multi-objective 
building design for building performance (Coley and Schukat 2002), (Wright et al., 2002), (Wetter, 2004), 
(Ross & Hastings, 2005), (Caldas, 2006), (Christenson, Anderson et al. 2006), (Ellis, Griffith et al. 2006), 
(Flager et al, 2009).   
 
Finally, trade-off analysis is an additional and emerging strategy in building performance (Ross and 
Hastings 2005). Related, but distinct from sensitivity analysis, trade-off analysis identifies which 
variables have competing impacts relative to value. Researchers are currently exploring local points, 
frontier sub-sets, frontier sets, and full trade-space for such trade-off analysis.  
 
While not an exhaustive list, we use these narrowly defined strategies as the basis and motivation for the 
four strategies tested (i.e.; tacit knowledge, validation, trend analysis, trend analysis plus validation) in 
addition to the theoretical limits we assume (i.e.; random guessing, full analysis) for energy efficient 
building design. We group sensitivity analysis and trade-off analysis together under trend analysis since 
both are capable of identifying performance patterns. In our pilot case, trend analysis is generated using 
full analysis. In the future, however, it will be possible to compute trend data based on statistically 
representative sample sizes, which will lessen the computing requirements significantly.  
 
Cost of Strategies 
In the past, researchers choosing between various decision-making strategies have generally assumed that 
processing resources are consumed in proportion to the amount of information transmitted (Galbraith, 
1974). Based on this assumption, the biggest obstacle to high performance or energy efficient design is 
the limit of time and resources. Without these limits, the best strategy would always be to solve a fully 
constrained modeling challenge using full analysis followed by a deterministic selection of the highest 
performer. The broad concept of sustainability and computer-aided, automated analysis, however, 
challenge this assumption in several ways. For example, sustainable architecture as connected to larger 
political, economic and ethical concerns is difficult to model or definitively define (Williamson et al, 



2003). Secondly, powerful computing capabilities of today tend to change the balance of resources 
needed to perform analyses. In traditional production, process costs are averaged over units produced 
during a period of time. Process costs include direct costs of production and indirect costs including 
equipment, set-up time, and rework. In the case where units of production are simulations analyzing 
alternatives and iteration time is in milliseconds, production costs may be insignificant relative to set-up 
or equipment costs. In other words, once a computer model has been built and equipment purchased, the 
cost of running an additional simulation (producing more information) may be negligible. As a result, the 
selection of strategy to assist in high performance design, in particular, and sustainable design, in general, 
is non-trivial, and the solution is not necessarily to fully analyze the design challenge in every instance. 
This research focuses on an empirical experiment performed in a simplified scenario of energy efficient 
design to explore whether the new evaluation method, DEAM, can meaningfully inform a selection 
process of design strategy based on the design challenge. 

 
To assess the process costs of applying the representative design strategies assigned above to a 
representative energy efficiency design challenge, the authors used professional estimates of the labor 
necessary to set-up and run a model for each strategy. Estimates are based on the number of objectives 
addressed and the analysis iterations required by a given strategy. For these process cost estimates, we 
assume a labor rate of US$100/hr. Energy trend and optimization tools are currently available and under 
further development (examples include Ellis and Griffin, 2006, Ross and Hastings, 2005). A prototype 
tool (Welle and Haymaker, 2011) was used to simulate these strategies in this research. However, 
additional development cost of experimental software is not included in the process cost estimate. In 
addition, differences in equipment requirements (i.e.; processing speed etc.) are also not accounted for. 
 
Table 1:  Process cost estimates for strategies. Costs are based on estimates of the labor hours required to implement 
individual strategies assuming a $100/hr labor rate.  Costs do not include labor estimates to develop a strategy nor 
associated equipment costs. 
 

Random 
Guessing 

Tacit 
Knowledge Validation 

Trend 
Analysis  

Trend 
Analysis  

+ Validation 
Full 

Analysis 
Process Cost  $      -     $ 100   $ 8,000   $16,000   $ 16,100   $  40,000  
 
Sample Challenge  
Our example high-performance building challenge is based on a relatively simple real-world case study - 
a 3 story, 100,000 sf, rectilinear office building. Table 2 shows the nine variables we modeled, which 
represent common design decisions impacting energy performance in new building construction. By 
using such a simple example, we limit our design space and provide a manageable data set, where we are 
able to perform all six illustrative strategies and systematically compare the nature of the challenge 
embodied. Table 2 lists the options considered for each variable.  While we acknowledge our simplified 
model is not representative of the full range of challenges facing sustainable design today, by closely 
examining a range of available analyses in a simple case of energy efficient design, we hope to 
demonstrate that the DEAM method can inform the selection of design strategies for complex and multi-
variable in sustainable design in the future.  
 
Table 2: Variables and their options in a rectilinear office building new construction project. 

Variable Options 
Window Type double-pane  double-pane, Low-E   

Insulation 1.94 RSI [R-11]  3.35 RSI [R-19]  
Lighting Efficiency 10.76 W/m2 [1W/sf]  8.61W/m2 [0.8W/sf]  

Exterior Shading No exterior shading  50% exterior shading  
Daylighting Controls No  Yes  

Building Shape Square [1:1 aspect ratio] Rectangular [1:2 aspect ratio]  
Building Orientation 0,  +/-45, +/-90 (rotation from N) 



Window to Wall Ratio 40% 90% 
HVAC System Type Variable-Air-Volume (VAV) High Efficiency VAV 

 
After identifying such a simple example, we performed a computer experiment on the challenge modeled 
to better understand the nature of the challenge presented (Sacks, et al., 1989). Specifically we asked if 
the challenge embodied in the design of a simple rectilinear office building might change if the building 
were being designed in different climate zones. To perform this experiment, we used a prototype software 
capable of queuing model iterations of all possible combinations of variables and analyzing the full range 
of outputs (Welle and Haymaker, 2011). We then evaluated the challenges by using metrics previously 
defined and referenced at the beginning of this paper (Clevenger and Haymaker, 2011). Specifically, we 
used these metrics to help quantify the comprehensiveness of the objectives analyzed, the number of 
variables that depend upon one another, the number of variables where change is good according to one 
goal but problematic for another, and the level of dominance among variables. We theorize if the 
fundamental relationships among variables vary non-trivially in simple design challenges across climate 
zones, they certainly vary non-trivially across more complex design challenges.   
 
For this computer experiment we characterize building performance (life-cycle savings above the baseline 
building) using net present value (NPV) according to Equation 1: 
 
Equation 1:   
NPV =  Baseline Budget - First Cost($) - 30 year Discounted Annual Energy Cost($) 
($.10/kWh energy cost and 3% inflation rate assumed) 
 
We varied the climate according to the climate characterization by location used in the Advanced Energy 
Design Guide for Small to Medium Office Buildings (ASHRAE, 2011). Our computer experiment 
analyzes these metrics for one design, but locates the project in six distinct climate classifications. Table 3 
lists interactive variables, variables with competing impacts as well as the three most dominant variables 
across climate zones. Variables with competing impacts make it difficult to maximize NPV. For example, 
low energy costs frequently come at the expense of higher first costs. Highly dominant variables indicate 
that those variables are highly correlated with maximizing NPV for the project. Table 4 shows the 
challenge metrics evaluated. In general, low objective space size (OSS), alternative space 
interdependence (ASI) and impact space complexity (ISC) values, and high value space dominance 
(VSD) value are associated with simple challenges. Conversely, high objective space size (OSS), 
alternative space interdependence (ASI) and impact space complexity (ISC) values, and low value space 
dominance (VSD) value are associated with complicated challenges. 
 
  



Table 3:  Computer experiment results showing the nature of and level of dominance for select variables in energy 
efficient decisions tested using rectilinear office building design across climate types. 

Zone  
Climate 

Type 
Representative 

City 

Number of 
Interactive 
Variables 

Variables with 
competing Impacts 

(tradeoffs) Dominant Variables 

2A Hot-
Humid Houston, TX 8 

1. Window Type 
2. Building Length 
3. Orientation 

1. HVAC efficiency (29%) 
2. Window Area (26%) 
3. Shade Control (12%) 

2B Hot-Dry Phoenix, AZ 8 
1. Window Type 

2. Orientation 
3. Building Length 

1. HVAC efficiency (28%) 
2. Window Area (26%) 
3. Shade Control (12%) 

4A Mild- 
Humid Baltimore, MD 9 

1. Window Type 
2. Orientation 
3. Daylighting 

1. Window Area (28%) 
2. HVAC efficiency (26%) 
3. Building Length (13%) 

4B Mild-
Dry 

Albuquerque, 
NM 10 

1. HVAC Efficiency 
2. Building Length 
3. Window Type 
Lighting Load 

1. Window Area (30%) 
2. HVAC efficiency (20%) 
3. Building Length (14%) 

6A Cold-
Humid Burlington, VT 8 

1. Window Type 
2. Wall Insulation 
3. Lighting Load 
4. Daylighting 

1. Window Area (35%) 
2. Building Length (16%) 
3. Shade Control (15%) 

 

6B Cold-
Dry Helena, MT 9 1. Window Type 

2. Daylighting 

1. Window Area (33%) 
2. Building Length (18%) 
3. Shade Control (13%) 

 
To compare and contrast the nature of the challenge designers face when trying to design a similar energy 
efficient office building in different climate zones, we applied the challenge metrics. While the precise 
implications of these differences have not been fully calibrated, they begin to reveal changes in relational 
characteristics such as differences in: 

• The level of dominance of one variable has over others 
• The number of competing variables (ones with off-setting impacts) 
• The level of interdependence of variables. 

Results of the evaluation of such metrics are presented in Table 4. 
Table 4:  Challenge metrics evaluated for rectilinear office building characterizing challenges across climate types. 

Zone Climate Type 
Representative 

City 

Objective 
Space 
Size 

(OSS) 

Alternative  
Space 

Interdependence 
(ASI) 

Impact 
Space 

Complexity 
(ISC) 

Value  
Space 

Dominance 
(VSD) 

2A Hot-Humid Houston, TX 2 .44 .33 .196 
2B Hot-Dry Phoenix, AZ 2 .44 .33 .180 
4A Mild- Humid Baltimore, MD 2 .5 .33 .164 
 4B Mild-Dry Albuquerque, NM 2 .55 .44 .158 
6A Cold-Humid Burlington, VT 2 .44 .44 .136 
6B Cold-Dry Helena, MT 2 .5 .22 .140 

 

Results from this computer experiment suggest non-trivial differences exist in the nature of the challenge 
addressed when designing the same rectilinear office building to be energy efficient in different climates. 
Beyond favoring different options for variables, Table 4 shows that characterization of a challenge is 
distinct per climate zone, and that each metric varies independently. If this is the case, the basis for 
individual design decisions and the selection of design strategy for making these decisions, may differ 
according to climate. Such findings are consistent with observations that high performance design 



modeling in general, and energy analysis in particular has struggled to reliably provide satisfactory results 
in practice. This is consistent with previous research indicating that that tacit knowledge also has limited 
power and transferability between building projects. Specifically, we draw the following illustrative 
conclusions about the challenges faced across climate types based on the results of the simple computer 
experiment performed. These conclusions are not intended to be universal, but rather illustrative of the 
way such an assessment might be used.  
 

1. Objectives remain the same across climate types tested. 
o Supportive reasoning: Objective Space Size (OSS) remains fixed. 

 
2. Dry climates tend to have more interactions among variables than humid ones.  

o Supportive reasoning: In general, the alternative space interdependence (ASI) increases 
for a given climate zone as the characterization changes from humid to dry. This finding 
merits more research since intuitively energy performance impacted by humidity as well 
as temperature suggests more interactive effects among variables. For a designer such a 
finding might discourage sub-optimization of options in dry climates. 
 

3. The number of trades-off for impacts differs across climate type.  
o Supportive reasoning: Changes in impact space complexity (ISC) indicate anywhere from 

2 of 9 to 4 of 9 design decisions might have competing impacts for the same building, 
dependent on the climate type. For a designer this means the number of decisions 
requiring a balancing act will differ, but may be unpredictable based on climate. 
 

4. Hot climates are more dominated by (one or two) variables (in this case, HVAC efficiency) than 
colder climates. 

o Supportive reasoning: In general, the value space dominance (VSD) decreases across the 
climate types ranging from hot to cold. When designing in hotter climates, the relevance 
may be that a good HVAC engineer is essential to good building performance. 

 
These illustrative findings from our simple computer experiment suggest that design challenges 
fundamentally differ across climate and motivate further investigation regarding the effectiveness of 
various strategies to promote energy efficient design across a range of challenges. In particular, if high 
performance design challenges fundamentally differ for simple buildings, the selection of appropriate 
strategy is, most likely, non-trivial. We investigate further to see if we can detect if and how different 
challenges warrant different design strategies in high performance design. Specifically we look to see if 
our metrics inform how to select which strategy will be more effective in high performance design for a 
given challenge. To do so, we calculate the value of information generated by six strategies relative to 
two distinct challenges. Figure 1 illustrates the information flow required to calculate the value of 
applying a given strategy to a given challenge. This process map illustrates how researchers first 
generate entire design spaces for a challenge (upper left) to assess its ASI, ISC, and VSD 
(center); researchers then run controlled experiments to measure designers’ exploration as they 
use various strategies (right); the final step provides feedback and allows researchers and 
designers to calculate the value of information afforded by strategies for challenges (bottom 
center). 
  



 
Figure 1:  Process map showing the information flow required to evaluate the value of information generated from 
applying a strategy to a challenge.   
 

 
 
Note, we demonstrate our method in the context of energy-efficiency, but it could apply to other 
multidisciplinary sustainable design problems where performance data is available. 
 
Value of information provided by strategy for challenge 
The source data for evaluation comes from two charrette tests conducted in 2009 using 15 building 
industry professional participants. In preparation for the charrette, the authors modeled variables and 
options impacting energy efficiency for a simple office building similar to the one presented in Table 2. 
We modeled two scenarios: new construction and renovation each with eight variables; the primary 
distinction between the two scenarios was that the renovation case fixed the geometry (building shape and 
window to wall ratio), and varied insulation levels in the walls and roof whereas the new construction 
case allowed changes to building geometry and did not vary insulation levels. We used our prototype 
software to generate simple cost estimates for all design alternatives for the variables and options 
modeled for both of the two scenarios. The goal was not to provide accurate cost estimates, rather, we 
attempted to include reasonable cost assumptions to provide internally consist data sufficient to support 
relative comparisons between design alternatives and across challenges. Table 5 characterizes both 
challenges using the challenge metrics.  
 



Table 5:  Challenge metrics evaluated for a renovation or new construction of a rectilinear office building. Results 
support characterization and comparison of the two challenges. 

Challenge 

Objective 
Space Size 

(OSS) 

Alternative  
Space 

Interdependence 
(ASI) 

Impact Space 
Complexity 

(ISC) 

Value  
Space 

Dominance 
(VSD) 

Total 

Renovation 2 .58 .25 .31 3.14 
New Construction 2 .70 .25 .63 3.58 

  
During the charrettes, we used a synthetic experiment with custom-built software EnergyExplorerTM to 
record the explorations executed by professionals for two challenges. Charrette participants individually 
used four of the narrowly defined strategies previous discussed to support their explorations. The 
maximum values, VSM, achieved using these explorations are listed in Table 6. In addition, results from 
implementation generated by computer analysis for random guessing and full analysis strategies are also 
shown. In all cases, value is calculated using Equation 1. Process costs are assumed to be those estimated 
in Table 1. We assess the value of information (VoI) for each of these six strategies using Equation 2 
which calculates the relative guidance afforded by a strategy as measured by the delta maximum value 
generated minus the cost of that strategy implemented. 
 
Equation 2:   
VoI= Maximum Value Generated (VSM) from Exploration supported by StrategyX, – VSM from 
Exploration supported by StrategyRandomGuessing– Process Cost (PC)StrategyX 
 
Equation 2 essentially states that the value of information generated is the increase in design value 
achieved over random guessing minus the cost to achieve it. Table 6 summarizes the value of information 
calculated per strategy based on the actual charrette data collected. Findings based on this data are 
summarized below. The normalized value of information is also provided for each strategy. The 
normalized value of information relates the value of information achieved to its highest potential value, 
TVfull analysis –  TVrandom guessing.  
 
Table 6:  Value of information assessed for six strategies across two challenges.  

 
Challenge 

Random 
Guessing 

Tacit 
Knowledge Validation 

Trend 
Analysis 

Trend 
Analysis  

+ Validation 
Full 

Analysis 
Top Value (TV) 
(in Millions) 

Renovation  $2.622   $4.968   $4.981   $4.993   $4.120   $5.411  
New Construction  $4.829   $6.302   $6.141   $6.450   $6.430   $6.500  

VoI ($) 
(in Millions) 

Renovation  $      -     $2.35   $2.35   $2.36  $1.48   $2.75  
New Construction  $      -     $1.47   $1.30  $1.61   $1.58   $1.63  

VoI ($) 
normalized) 

Renovation 0 0.84 0.84 0.85 0.53 0.99 
New Construction 0 0.88 0.78 0.96 0.95 0.98 

 
Using this information gathered during the charrette, we can compare the value of the information 
generated across two challenges and six strategies based on the modeled performance of the alternatives 
generated. We graphically show this comparison in Figure 2 and discuss illustrative conclusions below. 



 
Figure 2:  Diagram comparing normalized value of information assessed for six strategies across two challenges.  
Strategies applied the less complicated renovation challenge are shown in red. Strategies applied the more 
complicated new construction challenge are shown in blue. 
 
These illustrative value of information results, summarized in Table 6 and diagramed in Figure 2, include 
empirical evidence to support several insights relating strategy to challenge: 
 

1. The more complicated a challenge, the more value provided by an advanced strategy. 
o Supportive reasoning:  In our example, the new construction challenge is more 

complicated based on a higher alternative space interdependence (ASI) and lower value 
space dominance (VSD) (Table 5). The normalized value of information is relatively 
higher across strategies for the new construction challenge, than the renovation 
challenge.  
 

2. Validation provides little or negative value.  
o Supportive reasoning:  Data shows that generating point data for validation has little to 

negative impact on the value of information provided. Specifically, the value of 
information of tacit knowledge and the value of information of trend analysis, two 
strategies providing no impact data, are higher than similar strategies providing point 
data. Possible reason for this include: data consisting of such a limited sample size even 
in challenges of this scale (totaling 574 or 864 alternatives) is misleading. Alternatively, 
providing such additional data may simply overload rather than aid the decision-maker 
(Galbraith, 1974).   

 
3. Trend analysis provides positive value.  

o Supportive reasoning: For both challenges, the second most valuable strategy to full 
analysis performed was trend data consisting of sensitivity and trade-off analyses. This is 
an important finding, since in many cases full analysis may not be a viable option. 
 

4. The value of advanced strategies dwarf their process cost. 
o Supportive reasoning:  Even for our relatively small rectilinear office building example, 

preliminary data shows that relatively inexpensive analysis strategies can bring 
potentially significant changes to a project’s expected value. 



Such results suggest that advanced strategies add value, particularly as challenges become more 
complicated in energy efficient design. 
 
Conclusion 
In this paper, we identify representative strategies currently implemented in energy efficient building 
design. We assign these strategies process costs. We motivate assessment of the exploration of these 
strategies by demonstrating that even for a relatively simple rectilinear office building project, the 
embodied challenge can vary non-trivially. Specifically, we demonstrate that siting the building in a 
different climate zone fundamentally changes the relationships among variables. We then test the 
relationship of strategy to distinct challenges using the measure of the value of information. In particular, 
we analyze the value of information provided by six strategies as narrowly defined, illustrative decision-
making processes. We collect empirical data from the application of each strategy to both challenges. 
Such data are critical because, in the real world, design teams rarely have the luxury of implementing 
several strategies on the same challenge to compare effectiveness. This work highlights the importance of 
having a method capable of comparing the effectiveness of a strategy across diverse challenges. 
 
Based on the assessment of these data, we conclude that advanced strategies are valuable in energy 
efficient design, and hypothesize that this conclusion may extend to the broader context of sustainable 
design in general. The effectiveness demonstrated dwarfs the cost of implementation and tends to increase 
in value the more complicated the challenge. Such findings generally encourage the development and 
implementation of advance strategies to support high performance building design. Split incentives may 
exist. Building owners reap the benefits of higher building performance, while designers generally bare 
the cost of the performing a more advanced strategy for a given challenge. Presumably, however, owners 
will be willing to pay more for better designs, and this paper proposes a method that can support the 
calculation of how much an owner should be willing to pay. We observe the currently performed point-
based verification is generally an unproductive strategy and, in many cases, may even be a deterrent to 
realizing high performance. The authors acknowledge, as have other researchers, that value of information 
calculations can result in overestimations because designers can choose not to act on the information 
provided, rendering the value of information void. In fact, in the real-world case study, which served as 
the basis for the example challenge tested (Table 2), some designers chose to do exactly that. Initial 
energy modeling results identified a leading, high performing alternative. Nevertheless, the designers 
chose a different alternative based on unanalyzed aesthetic considerations. In the vast design spaces of 
high performance building design, it is understandable and foreseeable that many decisions will involve 
unanalyzed variables regardless of the level of advancement of the strategy implemented. Perhaps the 
most encouraging outcome of this research is the finding that suggests relatively high value of 
information results from trend-analysis strategies, consisting of sensitivity or trade-off analysis. Trend 
analysis may guide designers towards high performing design, particularly in large design spaces, even if 
it does not identify specific variable values for the optimum design.  
 
Future research will focus on allowing designers to more precisely align strategy effectiveness with the 
individual challenge metrics. Additional computer experiments can test a wider range of variables such as 
occupancy, equipment schedule, or even uncertainty. The method proposed in this paper may support the 
selection of a custom strategy(s) for energy efficient building challenges with specific variables. It 
provides a method for definitive valuations of how much a designer or owner should be willing to pay for 
the information generated by a specific strategy as it relates to the specific energy efficiency example. 
Fundamentally, sustainable design faces similar challenges to many multi-disciplinary optimization 
problems, with the added obstacle of including numerous unquantifiable metrics. As evaluation 
techniques come on-line to help quantify sustainability metrics, DEAM could be applied to these more 
robust design challenges. Or, if such metrics remain unquantifiable, it may be possible to apply DEAM to 
these challenges to assess the impact of having unquantifiable metrics, and ultimately to identify which 
strategy might be best for addressing such challenges. 



References   

Al-Homoud, Mohammad S. Computer-aided Building Energy Analysis Techniques. Building and 
Environment 2001; 36, 421-433. 

American Institute of Architects (AIA). Integrated project delivery: a guide. AIA California Council 
2007.  

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). ASHRAE's 
Energy Design Guides: Advanced Energy Design Guide for Small to Medium Office Buildings: 
50% Energy Savings 2011 http://aedg.ashrae.org/index.php. Last accessed September, 2011. 

Bazjanac V. IFC BIM-cased methodology for semi-automated building energy performance simulation. 
University of California, California, United States, Lawrence Berkeley National Laboratory 2008. 

Bettonvil B. Detection of important factors by sequential bifurcation. Tilburg University Press, Tilburg; 
1990. 

Breesch H, Janssens A. Uncertainty and sensitivity analysis of the performances of natural night 
ventilation. Proceedings of Roomvent 2004, 9th International Conference on air distribution in 
rooms, Coimbra, Portugal. 

Brown D, Tapia CM. Federal renewable energy screening assistant (FRESA) user's manual: Version 2.5. 
U. S. D. o. E. Laboratory. Golden, Colorado, National Renewable Energy Laboratory 2002. 

Caldas L. GENE_ARCH: An evolution-based generative design system for sustainable architecture. In: 
Smith, I.F.C. (ed.): Lecture Notes in Artificial Intelligence Springer-Verlag Berlin Heidelberg 
2006; 109-118. 

Christenson C, Anderson R, et al. BEopt software for building energy optimization: features and 
capabilities. U. S. D. o. Energy. Golden, Colorado, National Renewable Energy Laboratory 21 
2006. 

Clarke JA. Energy simulation in building design, Butterworth-Heinemann 2001. 
Clevenger C, Haymaker J, Ehrich A. Design Exploration Assessment Methodology: Testing the Guidance 

of Design Processes. Technical Report 192 Center for Integrated Facility Engineering 2010. 
Stanford, California. http://cife.stanford.edu/online.publications/TR192.pdf Last Accessed July 
2010. Submitted to Journal of Engineering Design.  

Clevenger C, Haymaker J. The Impact of the Occupant on Building Energy Simulations, Joint 
International Conference on Computing and Decision Making in Civil and Building Engineering 
2006. Montreal, Canada. 

Clevenger, C M, Haymaker, J.Metrics to Assess Design Guidance. Design Studies 2011 32(5), 431-456. 
doi: 10.1016/j.destud.2011.02.001 

Coley DA, Schukat, S. Low-energy design: Combining computer-based optimisation and human 
judgement. Building and Environment 2002; 37(12): 1241-1247. 

Crawley DB, Hand JW, Kummert M, Griffith BT. Contrasting the capabilities of building energy 
performance simulation programs. Building and Environment 2008;43(4):661-673.  

Crawley D, Lawrie L. What's next for building energy simulation - a glimpse of the future. Proceeding of 
the National Passive Solar Conference, 1997; 22: 309-314.   

Cross R, and Roozenburg N. Modeling the design process in engineering and architecture. Journal of 
Engineering Design 1992; 3:4. 

de Wilde P, van der Voorden M. Providing computational support for the selection of energy saving 
building components. Energy and Buildings, 2004; 36:749-58. 

de Wit MS, Augenbroe G. Analysis of uncertainty in building design evaluations and its implications. 
Energy and Buildings 2002; 34:951-58. 

de Wit MS. Uncertainty analysis in building thermal modeling. International Symposium SAMO95. 
1995. Belgirate, Italy. 

Eckert C, Clarkson J. The reality of design. In: Eckert, C., Clarkson, J. (Eds.) Design Process 
Improvement:  A Review of Current Practice, Springer; 2005. 

Ellis PG, Griffith B, Automated multivariate optimization tool for energy analysis. IBPSA SimBuild 2006 
Conference. 2006. Cambridge, Massachusetts. 

http://aedg.ashrae.org/aedgagreement.php?aedg=7&source=4c14babf27bc3bc87538c956421cea9edu
http://aedg.ashrae.org/aedgagreement.php?aedg=7&source=4c14babf27bc3bc87538c956421cea9edu
http://aedg.ashrae.org/index.php
http://cife.stanford.edu/online.publications/TR192.pdf
http://mycahs.colostate.edu/caroline.clevenger/documents/OccupantImpact_2006.pdf


Fischer, M. Formalizing Construction Knowledge for Concurrent Performance-Based Design. Intelligent 
Computing in Engineering and Architecture. Berlin/Heidelberg: Springer, 2006; 186-205. 

Flager F, Aadya A, Haymaker J. AEC Multidisciplinary Design Optimization: Impact of High 
Performance Computing. Technical Report 186 Center for Integrated Facility Engineering 2009. 
Stanford, California. http://cife.stanford.edu/online.publications/TR186.pdf.  Last accessed May, 
2010. 

Flager F, Welle B, Bansal P, Soremekun G, Haymaker J. Multidisciplinary Process Integration and 
Design Optimization of a Classroom Building, Journal of Information Technology in 
Construction (ITcon) 2009; 14: 595-612. 

Foschi RO, Li H, Zhang J. Reliability and performance-based design: a computational approach and 
applications. Structural Safety 2002; 24(2-4), 205-218. 

Frost RB. A converging model of the design process: analysis and creativity, the ingredients of synthesis. 
Journal of Engineering Design 1992; 3(2): 117-126. 

Furbringer JM, Roulet CA. Comparison and combination of factorial and monte-carlo design in 
sensitivity analysis. Building and Environment 1995; 30(4): 505-519. 

Galbraith JR. Organization Design: An Information Processing View. Interfaces 1974; 4(3): 28-36. 
Gane, V. and Haymaker, J., (2010). Benchmarking Conceptual High-Rise Design Processes. Journal of 

Architectural Engineering, Vol. 16, No. 3, September, 100-111. 
Gueymard C Direct and indirect uncertainties in the prediction of tilted irradiance for solar 

engineering applications. Solar Energy, 2009 83, 432-444. 
Harputlugil G, Hensen J, de Wilde P. Simulation as a tool to develop guidelines for the design of school 

schemes for four climatic regions of Turkey. Proceedings of the 10th IBPSA Building Simulation 
Conference, Tsinghua University, Beijing. 2007; 1805-1812.  

Haymaker J. Communicating, Integrating, and Improving Multidisciplinary Design Narratives, 
International Conference on Design Computing and Cognition. Springer, Netherlands 2006; 635-
65 

Hensen JLM. Towards more effective use of building performance simulation in design. Developments in 
Design & Decision Support Systems in Architecture and Urban Planning. Edited by Jos P. van 
Leeuwen and Harry J. P. Timmermans, Eindhoven University of Technology, Department of 
Architecture, Building and Planning, Eindhoven, the Netherlands 2004. 

Howard RA. Decision analysis: Practice and promise. Management Science 1998; 34(6): 679-695. 
Judkoff R, Neymark J. International energy agency building energy simulation test (BESTEST) and 

diagnostic method. IEA Energy Conservation in Buildings and Community Systems Programme 
Annex 21 Subtask C and IEA Solar Heating and Cooling Programme Task 12 Subtask B 1995. 

Kleijnen JPC. Sensitivity analysis and related analyses: A review of some statistical techniques. Journal 
of Statistical Computation and Simulation 1997; 57(1-4); 111-142. 

Lam JC, Hui SCM. Sensitivity analysis of energy performance of office buildings. Building and 
Environment 1996; 31(1): 27-39. 

Lomas KJ, Eppel H. Sensitivity analysis techniques for building thermal simulation programs. Energy 
and Buildings 1992; 19(1): 21-44. 

Macdonald IA, Strachan P. Practical application of uncertainty analysis. Energy and Buildings, 2001; 33: 
219-227. 

Macdonald IA. Quantifying the effects of uncertainty in building simulation. Department of Mechanical 
Engineering, University of Strathclyde 2002; Degree of Doctor of Philosophy: 267. 

Majidi M, Bauer M. How to overcome HVAC simulation obstacles. Building Simulation, Fourth 
International Conference Proceedings, IBPSA 1995. 

Mara TA, Tarantola S. Application of global sensitivity analysis of model output to building thermal 
simulations. Building Simulation 2008; 1(4): 290-302. 

McGraw-Hill Construction. Interoperability in the Construction Industry, SmartMarket Report 2007. 
Available online at http://construction.ecnext.com/coms2/summary_0249-259123_ITM. 
Published 24 Oct (2007). [Accessed 30 Nov 2007]. 

http://cife.stanford.edu/online.publications/TR186.pdf


Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics 1991; 
33(2): 161-174. 

Morris MD. Two-stage factor screening procedures using multiple grouping assignments. 
Communications in Statistics - Theory and Methods 1987; 16(10): 3051-3067. 

O’Neill PJ, Crawley DB. Using regression equations to determine the relative importance of inputs to 
energy simulations tools. Building Symposium, 1991. Nice, France. 

Papamichael K, Pal V. Barriers in developing and using simulation-based decision-support software. 
Proceedings of the 2002 ACEEE Summer Study on Energy Efficiency in Buildings, Asilomar 
Conference Center, Pacific Grove, California. 

Rahni N, Ramdani N, Candau Y,  Guyon G. Exact Differential sensitivity analysis - Application to 
dynamic energy models developed on the CLIM 2000 software. EUROTHERM, Mons (Belgium) 
1997; 10:99-106, (ISBN 92-827-5530-4). 

Rahni N, Ramdani N, Candau Y, Guyon G. Application of group screening to dynamic building energy 
simulation models.  Journal of Statistical and Computational Simulation 1995; 57; 285-304. 

Robèrt, K. H., B. Schmidt-Bleek, et al. (2002). "Strategic sustainable development — selection, design 
and synergies of applied tools." Journal of Cleaner Production 10(3): 197-214. 

Ross A, Hastings D. The tradespace exploration paradigm. INCOSE 2005 International Symposium. 
Rochester, New York. 

Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical 
Science 1989; 4(4): 409-435. 

Sacks R, Eastman CM, Lee G. Parametric 3D modeling in building construction with examples from 
precast concrete. Automation in Construction 2004;13(3):291-312. 

Simon HA. Bounded rationality. Eatwell, J., Milgatc, M. and Newman, P. (eds). The New Palgrave, 
London, Macmillan 1987b; 266-8. 

Welle, B., Haymaker, J., and Rogers, Z. (2011). “ThermalOpt: A Methodology for Automated BIM-
Based Multidisciplinary Thermal Simulation for use in Optimization Environments.” Building 
Simulation: An International Journal, Vol. 4, 293-313. 

Wetter M. Simulation-based building energy optimization. Mechanical Engineering. Berkeley, California, 
University of California 2004; Doctor of Philosophy: 989-999. 

Willman AJ. Development of an evaluation procedure for building energy design tools. Proceedings of 
Buildings Energy Simulation 1985: 302-307. 

Williamson, T J, Radford, A, & Bennetts, H. Understanding sustainable architecture: Spon Press 
2003. 

Wilson, J, Tyedmers, P.,Pelot, R. Contrasting and comparing sustainable development indicator metrics, 
Ecological Indicators, Volume 7, Issue 2, April 2007, Pages 299-314. 

Woodbury RF, Burrow AL. Whither design science? Artificial Intelligence for Engineering Design 
Analysis and Manufacturing 2006; 20(2): 63-82. 

Wright JA, Loosemore HA, Farmani R. Optimization of building thermal design and control by multi-
criterion genetic algorithm. Energy and Buildings 2002; 34(9):959-972. 

Zhu L, Kazmer D. A Performance-based Representation of Constraint Based Reasoning and Decision 
Based Design, Proceedings of 2000 ASME International Design Engineering Technical 
Conferences and the Computers and Information in Engineering Conference 
(ASME2000IDETC/CIE), DETC2000/DTM-14556.  

 
 
 
 
 


	CIFECENTER FOR INTEGRATED FACILITY eNGINEERING
	Copyright © 2010 by
	TR193 content updated 02152012.pdf
	Abstract
	Keywords
	Classification:
	Terms
	Introduction
	Strategies
	Cost of Strategies
	Sample Challenge
	Value of information provided by strategy for challenge
	Conclusion


